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Abstract

Chemical accidents often lead to negative consequences for the environment. Preparedness and
proper actions are, therefore, essential components in order to minimise environmental effects. To
assist and facilitate this work, a proposed planning tool, the environment–accident index (EAI),
was formulated by Scott [J. Hazard. Mater. 61 (1998) 305]. As a result of a first validation of
the index, based on 21 chemical accidents, the database was complemented with 42 additional
accidents covering a broader spectrum of chemicals. The additional accidents were collected by
means of an inquiry and their environmental consequences are, so far, unknown. The collected
data had an overrepresentation of accidents involving petroleum products (69%). Because of the
overrepresentation of this group of chemicals in the material, the data was skewed with respect
to chemical properties. Since the model should be valid for a variety of chemical accidents, a
method was needed which enabled a proper and unbiased selection of a representative subset of
accidents to be used in development and validation of the model. For this purpose, the possibility
to use multivariate data analysis in combination with statistical design was investigated. The result
showed the feasibility of this method in the selection of a representative subset from a complex and
skewed large dataset. Within the new dataset, 53% were accidents involving petroleum products
and 47% involved other chemicals. The selected accidents will be used in further work to evaluate
the environmental consequences, for model development and model validation. © 2002 Elsevier
Science B.V. All rights reserved.
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1. Introduction

1.1. Background

Chemical accidents often lead to negative consequences for the environment. Prepared-
ness and proper actions are, therefore, essential components in order to minimise environ-
mental effects. People dealing with the accidents will face many questions. How toxic is
the chemical? How will the chemical behave in the environment? Which are the spreading
properties of the environment and which are the resulting consequences for the environ-
ment? Instead of trying to collect such data at the time of the accident this work should
already be done at the planning stage. To assist and facilitate this work a proposed planning
tool, the environment–accident index (EAI), was formulated by Scott [1]. The EAI was
formulated as a simple equation based on chemical inherent properties and properties of the
surroundings at the accident sites, such as soil and groundwater conditions. The magnitude
of the index could then be used to judge the consequences for the environment in order to
take proper actions at an accident site.

A first validation of the EAI, based on 21 chemical accidents, demonstrated that the
index has the capacity to become a useful tool for the ranking and classification of what
kind of further risk assessment to be performed [1]. However, to achieve this the variables
describing the surroundings need to be more detailed and spreading related descriptors,
such as volatility and density, should be added. A disadvantage with the dataset used for
the validation is that it only consisted of 21 accidents, with a focus on petroleum products.
Therefore, the database was complemented with 42 additional accidents covering a broader
spectrum of chemicals.

In the development of the EAI it is necessary to make an unbiased judgement of relevant
variables to include in the formula and to estimate their relative importance. To avoid
focusing on petroleum products and thus increase the chemical diversity, there is a need for
a method to select a representative subset of accidents. To address the above the following
strategy is proposed:

I. To collect a larger database of accidents, together with relevant numerical descriptors
to be used in the development of the index.

II. To condense the large number of dependent descriptors in the database into a few
orthogonal independent descriptors.

III. To use the new latent descriptors in a statistical experimental and multivariate design
to select a minimum number of representative accidents.

IV. To evaluate the consequences for the environment of the representative set of accidents,
e.g. by an expert panel.

V. Model development.
VI. Model validation.

In the first paper [1], accidents involving both organic and inorganic chemicals was
included in the validation. This paper deals with the chemical accidents involving organic
chemicals only and with parts I–III in the proposed strategy.
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The objectives of this paper were to select a representative set of chemical accidents for
the following development of the EAI and to investigate if it is possible to use multivariate
statistical design for the selection.

2. Materials and methods

2.1. Chemical accidents

The material used in the project was data on chemical accidents that occurred between
1986 and 1999 containing two parts, one part with accidents from the first validation and
other with additional accidents. The 42 additional accidents were mostly collected by means
of an inquiry containing questions about chemical accidents. All information concerning
the accident material is available from the author [2]. The inquiry was sent to the public en-
vironmental health offices and the rescue services of all 289 municipalities in Sweden. The
information asked for was a short description of the place of the accident, cause, chemical
involved, amount of the stored or transported chemical and eventual damage to the environ-
ment. Following the inquiry, a deeper investigation was performed to gain a more detailed
knowledge about both the chemical and the place of the accident. In the new database, the
data had an overrepresentation of accidents involving petroleum products (69%). The ten-
dency was confirmed by statistics from the Swedish Rescue Services Agency [3–6], which
showed that 60–77% of chemical accidents occurred between 1996 and 1999, involved
petroleum products. The dataset was thus skewed with respect to chemical properties. Be-
cause the EAI also shall be valid for other organic chemicals, there was a need for a method
to select a representative dataset for the calibration of the index.

Another problem in the selection procedure was that variables describing inherent prop-
erties of the chemicals (see below) tended to be more heavily weighted than the other
variables. These variables would, therefore, easily receive too much importance in the final
selection. It was of utmost importance that descriptors for the surrounding were given equal
attention. To address the above problems statistical multivariate design was used in the
selection procedure.

2.1.1. Descriptor variables
The collected material (dataset) consisted of 58 chemical accidents (objects) described

by 10 parameters (variables) (Table 1). Additional information showing the places where
the accidents occurred is given in Table 2. Three accidents (numbers 6, 7 and 52) involved
chemicals with a very high viscosity. These accidents were excluded in the calculations
because of the extreme chemical properties that also would create an unbalanced design.
A balanced design will be achieved by a selection of test objects projected far from each
other in the score plot (Section 2.2.1) but not on the extreme periphery of the plot. This left
55 chemical accidents to be modelled.

The descriptor variables were: kinematic viscosity,v (mm2/s); water solubility,Sw (wt.%);
amount of the stored or transported chemical,m (metric tonnes); acute toxicity for water
living organisms, Tox (mg/l); and properties of the surrounding environment. Toxicity and
amount are important variables to judge effects on the environment. However, it is the
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Table 2
Score values for PCA of the dataseta

Obs. no. Obs. Name PC1 PC2 PC3

1 Arboga 0.56 0.24 −0.12
2 Haninge 0.52 −0.23 −0.40
3 Solna 0.01 1.28 1.21
4 Gallivare −0.32 2.22 −0.70
5 Eskilstuna 1.89 3.18 −2.10
8 Ystad −0.41 1.83 0.25
9 Nykoping 0.24 1.19 1.41

10 Mariestad 0.50 0.51 −0.28
11 Torsby 0.50 0.17 0.36
12 Hallsberg −0.02 1.10 −1.44
13 Ange 0.22 0.75 −1.10
14 Solna 0.83 −0.66 −1.01
15 Karlshamn −0.24 1.71 −1.16
16 Sodertalje −0.22 1.59 −1.13
17 Boden 0.09 1.21 0.18
18 Vaidotai 0.14 1.08 0.77
19 Orebro 0.31 2.46 2.48
20 Nykoping 0.85 0.42 0.23
21 Helsingborg 0.65 0.17 −0.49
22 Robertsfors 0.41 0.53 −1.09
23 Torsby 1.51 −1.61 0.57
24 Norrtalje 0.61 0.55 0.38
25 Vastervik −0.43 1.61 0.66
26 Eksjo 0.58 0.83 0.55
27 Hofors 0.04 0.96 −2.77
28 Falkoping 0.45 0.47 −0.55
29 Nykoping −1.91 −0.88 −0.24
30 Kil −2.44 1.04 1.40
31 Kungsbaca −2.53 8.38 2.50
32 Hidinge −1.90 −1.24 −0.52
33 Falkoping −1.78 −1.56 −0.73
34 Lycksele −2.62 −0.71 −2.54
35 Bracke −1.88 −1.55 −0.50
36 Grangesberg −1.84 −2.38 −1.05
37 Norrtalie −2.03 −0.75 0.09
38 Ragunda −1.91 −0.76 1.14
39 Oskarshamn −2.28 −0.48 −0.70
40 Harryda −2.30 −0.60 −0.78
41 Astorp 1.30 −2.86 1.15
42 Karlstad 2.15 −0.49 1.47
43 Oxelosund −1.03 0.33 1.10
44 Kotka −0.44 0.23 −0.52
45 Sundsvall 2.33 0.15 −1.77
46 Hango 1.07 −0.62 −0.04
47 Molndal −0.28 −1.87 1.19
48 Angelholm −0.72 −1.51 0.30
49 Malmo −0.86 0.58 0.64
50 Visby 2.05 −0.17 −0.19
51 Vetlanda 0.79 0.87 1.85
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Table 2 (Continued )

Obs. no. Obs. Name PC1 PC2 PC3

53 Vetlanda 3.91 −1.61 0.91
54 Malmo 0.53 −2.27 0.62
55 Malmo 1.91 −1.74 −0.44
56 Eslov 4.32 −0.91 −0.69
57 Varberg 1.39 0.35 0.14
58 Vallinge 3.02 0.68 0.70

a Accidents in the training (bold) and validation sets (italic). The accidents are named (Obs. name) after the
place where they occurred.

toxicity in relation to the amount that is crucial for the effects on the environment at an acci-
dent site. A less toxic chemical (high value= high concentration of the chemical is needed
to cause effect) can in large amounts cause severe damage to the environment as well as a
small amount of a highly toxic chemical (low value= low concentration of the chemical is
enough to cause effect). Therefore, the ratio of amount/toxicity (m/Tox) was calculated and
used in the selection procedure. The water solubility of a chemical is important both for
the spreading properties and for how toxic the chemical will be to the environment and the
viscosity contributes to describe the (horizontal) spreading of the chemical. With respect
to the first validation two new descriptor variables for chemical inherent properties, were
added to the dataset: density,D (kg/m3); vapour pressure,Pv (kPa). These new variables
are important to describe the vertical transportation of the chemical in water and soil and
evaporative losses to the air. Properties related to the chemicals were gathered from various
literature sources and databases [7–18].

The properties of the surroundings were described by the distance to nearest well, lake
or watercourse, DNW (m); the depth to groundwater surface, DGS (m); the slope of the
groundwater surface and the flow direction, SGS (leaning towards a well lake or watercourse
(=1), horizontal surface (=0.5) and no well lake or watercourse in the flow direction (=0.1));
and the permeability of the soil. In the first validation, the permeability of the soil was
expressed as type of soil, i.e. sand, gravel or clay. However, more quantitative variables
were needed to better describe the behaviour of the chemicals in the different types of soils.
Two new variables were, therefore, introduced, replacing the type of soil variable, viz. the
hydraulic conductivity for each chemical and soil,K′ (m/day) and the porosity of the soil,n
(%). The calculated values of hydraulic conductivity were assumed to be under saturated soil
conditions and were calculated as shown by Engström and Gustavsson [19] in formula (1).

K ′ = vw

v′ Kw (1)

The variablevw is the kinematic viscosity for water,v′ is the kinematic viscosity for the
chemical andKw the hydraulic conductivity in the specific soil for water. The new variables
give a better description on how the chemicals will behave in the soils in case of a spill
than just using the type of soil. The dataset can be considered as consisting of two groups
of variables,v, Sw, D andPv describing the inherent properties of a chemical and DNW,
DGS, SGS,K′ andn being a second group related to the properties of the surroundings at
the accident site. The amount of a chemical involved in an accident and thus also the ratio
m/Tox, are properties which do not belong to any of the two groups.
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2.1.2. Explanation to how the variables are used
Petroleum products are not pure compounds but mixtures of different hydrocarbons and

the values of toxicity, density, vapour pressure and viscosity presented in the literature, are
given as intervals. It was, therefore, decided to use the arithmetic mean of the lowest and
highest value in the calculations.

The type of soil at an accident site is not always clear and easy to judge. At industrial
sites, the soil might consist of filling which can be mixtures of many different materials.
However, a filling is often highly permeable and was, therefore, regarded as sand or gravel
in the calculations of the hydraulic conductivity.

The amount of the chemical used was the maximal transported or stored amount of the
pure compound (or mixture). The reason for this is that a worst-case scenario is desired
when calculating the EAI to avoid underestimation of the situation. Therefore, mixtures
with water were recalculated as pure compounds.

The water solubility (Sw) was used as follows: if the solubility is given as<1 wt.%, the
value 0.1 wt.% was used. If the solubility is given as�1, the value 0.01 wt.% was used. If
the solubility is given as complete mixable or >90 wt.%, the value 90 wt.% was used.

For the hydraulic conductivity (K′) which covered several magnitudes of range, it was
considered precise enough to make a division into three classes: (=1) for values<1 m/day,
(=2) for values 1–10 m/day and (=3) for values >10 m/day.

For the variable DNW, the ditches connected to watercourses were also accounted for
due to the risk of further spreading of the chemical from ditches to larger watercourses or
lakes. For accidents where the chemical was spilled directly into water, DNW was set to
0.01 m for modelling–technical reasons.

For the variable DGS, the accidents where there were no data available on the depth to
the groundwater surface, the mean value of the other accidents, with known DGS and the
same type of soil, was used as estimation. For accidents where the chemical was spilled
directly into water, DGS was set to 0.01 m for modelling–technical reasons.

For some chemicals the vapour pressure is very low and the losses to air were considered
negligible. Hence, the data were replaced with vl= very low in the data table (Table 1). For
other accidents information on vapour pressure for the chemical and hydraulic conductivity
and porosity for the surrounding could not be found and were, therefore, labelled u=
unknown in the table.

2.1.3. Pre-treatment of dataset
The variablesPv, D, m/Tox, Sw, DNW and DGS were log transformed and the variable

viscosity (v) was employed a square root transform to approach normality. Before calcula-
tion the data was mean centred and scaled to unit variance in order to allow each variable
equal opportunity to influence the model.

2.2. Methods

Principal component analysis (PCA) was selected as means to get an overview of the
dataset (Table 1) when taking all variables into account, a strategy described by Eriksson
[20]. This overview formed a basis for the selection of a subset of representative accidents
for training and validation of the EAI.
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2.2.1. Data analytical method: PCA
PCA is an analytical projection method designed to extract the systematic variation in

large data tables and get an overview of patterns and trends in the data. PCA can handle
dependent descriptor variables, such as the group of chemical property variables. Another
advantage is that calculations are made without incorporating any assumptions concerning
physical laws or the mathematical model. The reason for choosing PCA and not, for example,
factor analysis (FA) lies in the function of the underlying model. The objective of this paper
is to make a selection from the original dataset to get a set of objects where all different
types of chemical accidents are represented. Therefore, a maximal spreading or variability
among the objects is desired, which is a specific feature of PCA on the contrary to FA which
explains the structure or the correlation in the data. A comparison of these two methods has
been done by Jackson [21].

By analysing the multivariate descriptor matrix with PCA the original large number of
descriptors are contracted to a few information-rich principal components (PCs). We use
these PCs as design variables because they are independent and can thus be used as variables
in statistical designs.

In PCA, displaying the dominant trends in plots facilitates the interpretation of the vari-
ation in the data. These plots are used to study relationships between objects (score plot)
and between variables (loading plot). Since, directions in the score and loading plots are the
same, these plots together can be used to study which variables have large influence on the
objects and vice versa. Outliers can be detected using the statistic Hotelling’sT2, which is a
multivariate generalisation of Student’st-test, Eriksson et al. [22]. This statistic can detect
observations that are extreme or that do not fit the PCA model well. In the variables score
plots, the Hotelling’sT2 defines the normal area corresponding to, for example, 95 or 99%
tolerance level and is given by a tolerance ellipse. In this work, the 95% level was used,
meaning thatN (=55 accidents)× 0.05 = 2.75 observations (accidents) were expected to
be outside the ellipse. For a thorough presentation of PCA [22].

The number of significant PCs are usually determined using cross-validation but in this
study, the number of significant components in the model was evaluated using the eigenvalue
criteria. An eigenvalue above 1 was considered significant, as suggested by Jackson [21].

2.2.2. Statistical experimental design
The selection of a subset of chemical accidents had a need to be done in such a way that

it would cover a sufficient range of variation in all the important variables for the index.
By using statistical multivariate design, such as factorial or fractional factorial designs,
schemes are generated that introduce systematic variation of all variables simultaneously.
Varying all the variables at the same time in such systematic way will insure that the whole
experimental area is investigated which is well described by Box et al. [23].

With the present type of data the “experiments” were chemical accidents, which contained
natural and uncontrolled data and they could not be performed at the desired combination
of variables and levels. In addition, the more or less correlated variables in Table 1 needed
to be condensed into a few dominant and orthogonal descriptors, before a statistical design
could be applied. By subjecting the data table to PCA, new descriptors were derived. These
new variables, the PCs, which summarise the information present in the original variables,
are also commonly referred to as principal properties (PPs), as described by Skagerberg
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[24]. Their applicability as design variables comes from the fact that PPs are few, orthogonal
and contain most of the information in the data from which they were derived. This method,
statistical multivariate design, hence allows a large number of variables to be a part of the
design.

Chemical accidents well separated from each other in the score plot of the PCA were
obvious candidates for selection because they represent a systematic spread in all properties.

Mathematically, the selection was based on a two level full factorial design in the de-
rived PPs, i.e. the score values. The design was complemented with three center points to
provide information about the curvature and to give a rough estimation about quadratic and
interaction terms. The selections were made according to a 2× 23 (=16 accidents) design.
This means that from each design level two representative accidents were selected. Then,
for future modelling and validation (see strategy in Section 1.1) the 16 selected accidents
were divided in two subsets, a training set for the building of a model and a validation set
for the validation of the model each containing eight accidents and complemented with two
and one center points, respectively.

2.2.3. Evaluation of the selected accidents
Because of constrains in the experimental space there was a need to evaluate that the

selection fulfils the desired criteria. Therefore, PCA was also used to evaluate how well
the selected accidents span the property space of the dataset (chemical inherent properties
and properties of the surroundings). By studying the separate PCA score plots calculated
for the two groups, respectively, it would be possible to evaluate if the selected accidents
efficiently span the domain of the variables within each group.

A separate evaluation of the diversity and coverage of the selected accidents with respect
to the range of each individual variable, according to the original dataset, was also made.

3. Results and discussion

A three-component PCA model was calculated for the whole dataset (Fig. 1a–d). The
model explained 52% (PC1 (22.3%)+ PC2 (16.7%)+ PC3 (12.5%)) of the variation in
the dataset (R2(X)) but the predictive power was low according to cross validation. This
is to be expected with this type of data, containing “natural” non-designed data, such as
soil and groundwater conditions and can be accepted since prediction, in this case, was not
the objective with the PCA modelling. Instead, the number of significant components was
evaluated using the eigenvalue criteria.

Looking at the score plot of the two first components (Fig. 1a) the two major chemical
groups of the dataset, diesel fuel (accidents 8–28) and gasoline (accidents 29–40), can be
discerned as clusters of data points. From the corresponding loading plot (Fig. 1b), it is
obvious that the chemical inherent properties vapour pressure (Pv) andm/Tox (negative
influence), water solubility (Sw) and density (D) (positive influence) influence PC1. Three
variables: viscosity (v), the slope of the groundwater surface (SGS) (positive influence) and
depth to groundwater surface (DGS) (negative influence) explain PC2. The third component
is controlled by the properties of the surroundings (Fig. 1d) and hence, the accidents are not
equally clustered along PC3 in the score plot (Fig. 1c). PC3 is mainly explained by variables
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Fig. 2. Model overview. Shows the extent to which each variable contributes to the model after three calculated
components. From 0= no contribution to 1= total contribution.

related to the properties of the surroundings: the hydraulic conductivity (K′), the distance to
nearest well, lake or watercourse (DNW) and the porosity (n) which have a positive influence
in the third component. Hence, PC1 can be considered a chemical property vector and PC2
and 3 mainly as surrounding property vectors. Looking at the model overview (Fig. 2) after
three calculated components the properties of the surroundings and the chemical inherent
properties are equally important for the model even though the overall importance is slightly
higher for the chemical inherent properties.

When the calculated PCs or PPs (PC1–3 in Table 2) were used as design variables
in a 23 full factorial design, 5–10 chemical accidents were found at each design level
(Table 3). Of those, one representative accident from each design level plus two center

Table 3
23 design with the candidates on each design level and the selected chemical accidentsa

Design levels Candidates Selected

t[1] t[2] t[3]

− − − 29, 32, 33, 34, 35, 36, 39, 40 32, 35a

+ − − 2, 14, 46, 50, 53, 55, 56 50a, 55
− + − 4, 12, 15, 16, 44 15a, 16
+ + − 1, 5, 13, 21, 22, 10, 27, 28, 45 21, 45a

− − + 37, 38, 47, 48 47a, 48
+ − + 23, 41, 42, 51, 54, 58 41a, 42
− + + 8, 25, 30, 31, 43, 49 30, 31a

+ + + 3, 9, 11, 17, 18, 19, 20, 24, 26, 57 3, 9a

0 0 0 1, 44, 49 1a, 44, 49a

a Accidents that form the training set.
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Fig. 3. Selected training and validation sets. Accidents in the training set are marked with a circle and the accidents
in the validation set are marked with a square.

points was selected to be included in the training set. Then the procedure was repeated,
although with only one center point, to form the validation set. In the selection, the most
extreme accidents were avoided (with the exception of accident number 31, which is a
good example of a transport accident and therefore included). Other knowledge about the
accidents (such as the magnitude of available information, investigations made after the
accident, etc.) was also considered. The selected accidents are also shown in the score plots
of Fig. 3a and b. Fig. 3a and b demonstrate that the selected accidents cover the investigated
PP space.

3.1. Analysis of selected accidents

Because of constrains in the experimental space it was also important to evaluate the
selection to see if the selected subset was the best possible and fulfils the desired criteria
for further modelling.

Further, in order to get a picture of how well the selected accidents represented the two
groups of variables in the dataset (chemical properties and properties of the surroundings)
separate PCAs were calculated for each group, respectively.
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Fig. 4. Coverage of the range of variation in chemical properties for the selected accidents, PC2/PC1: (a) variable
scores; (b) variable loadings. Hotelling’sT2 (0.05) is given by the tolerance ellipse.

The resulting two-component score plot of the chemical inherent properties is shown in
Fig. 4a. The two groups of diesel fuel and gasoline can clearly be discerned. The loading plot
(Fig. 1b) demonstrate that PC1, which has more influence on the model than PC2 (49.7%
compared to 25.1%), is explained by all variables. The most important of those is vapour
pressure, which has a large negative influence. Density, water solubility and viscosity are
separated along PC2. The positions of the chemical property variables within the loading plot
will give different spreading scenarios in each of the four quadrants. Depending on in which
of the quadrants the chemical accidents are positioned they will represent different spreading
scenarios regarding the chemical inherent properties. The selected accidents (Fig. 4a) are
not covering all quadrants and hence, not all types of spreading scenarios. However, since
the original dataset, based on real cases, does not either have a balanced coverage of all
four quadrants, the selected accidents can be regarded as the best possible, covering the real
situation.

In Fig. 5a, showing the two-component PCA score plots of the properties of the sur-
roundings, the selected accidents are randomly distributed without strong groupings. The
loading plot (Fig. 5b) shows that DGS has the main influence on PC1, followed by SGS
andK′ and that PC2 is explained by DNW. Only the porosity of the soil (n) is less well
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Fig. 5. Coverage of the range of variation in properties of the surroundings for the selected accidents, PC2/PC1:
(a) variable scores; (b) variable loadings. Hotelling’sT2 (0.05) is given by the tolerance ellipse.

explained. The four quadrants will represent different spreading scenarios, based on the
positions of the variables, with respect to the properties of the surroundings. Of the selected
accidents number 31 is a weak outlier, influenced byK′, but overall the score plot in Fig. 5a
shows that the selected accidents are well representing the different spreading scenarios
and will be good representatives of the original dataset with respect to the properties of the
surroundings.

The analysis of the separate score plots shows that the selected accidents are representative
for the original dataset with respect to both groups of variables. However, a closer look at
each variable according to the selected accidents is necessary to see if the selected accidents
are well distributed within the variables and not only covering a single measure. This can be
seen in the column plots of each variable (Fig. 6). In Fig. 6, all variables seems to be quite well
represented, within their respective ranges, of the selected training and validation sets, except
for variables SGS and DNW. This means that these types of surrounding circumstances
could be underestimated. SGS has one class (0.1; no well, lake or watercourse) that is not
represented. However, this situation, pointing at a low-risk scenario for spreading of the
chemical to the water environment, is not very common (two of 55 accidents) and will,
therefore, probably not cause any underestimation of the situation when using the EAI in
the future. The variable DNW also has one scenario missing and that is release of chemical
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Fig. 6. Column plots showing, for each variable, the pattern of each accident in the original dataset in light grey
colour. The selected training and validation sets are dark grey coloured. Transformed variables have been used
due to large range of variation in the data.



Å. Scott et al. / Journal of Hazardous Materials A91 (2002) 63–80 79

directly into water, DNW= 0.01 m. However, in the original EAI [1], DNW between
0 and 10 m was regarded to belong to the same risk category and was, therefore, given
the same point during the calculations. Therefore, this type of scenario can be covered by
other selected accidents that occurred within 10 m from a well, lake or watercourse, such
as accident numbers 32, 15, 45 and 49.

4. Conclusions

The objectives of this paper were to select a representative set of chemical accidents for
the further development of EAI and to study if it is possible to use PCA in combination
with statistical experimental design to do the selection. The assembled dataset consisted of
both laboratory produced data and natural data (such as the ones concerning the soil and
the groundwater) and was highly skewed because it covered a large range of compound
specific properties and properties of the surrounding. Conclusions that can be made from
this work are:

• Although the material is complex and the selection was made according to a less stringent
significance criterion, eigenvalue 1, PCA and multivariate design can be used to make
an objective selection of representative subsets of data to be used for modelling and
evaluation of the EAI.

• Evaluation of the selection has demonstrated that both the descriptors for chemical inher-
ent properties and properties of the surroundings were well represented in the selected
sub set of chemical accidents. The only exceptions were the variable SGS and DNW
but the different scenarios were either low-risk or covered by other accidents and will,
therefore, probably not cause any underestimation of the situation when using the EAI
in the future.

• The selected subset of chemical accidents can thus be used in the work of developing
criteria for how to judge the environmental consequences of a chemical accident.
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